RE sources
Climate Change
Case Studies
Video Gallery
RE and CC Landscape
TERI Bhuvan

Image Source

A Montana State University physicist who has developed a new model that predicts the speed of solar plasma during solar flares, likening it to the path traveled by a thrown baseball, will present his findings at the Solar Physics Division of the American Astronomical Society conference being held this week in Boulder, Colorado. Researcher has developed the model that might help to define how solar flares evolve and provide better ways to predict them. Their work could have applications on how to protect power grids and communication technology and aeronautics from the energy released by the flares. Brannon used data from the NASA Interface Region Imaging Spectrograph satellite, also known as IRIS, which monitors a specific layer of the sun known as the transition region. The transition region is thin, but complex, and separates the sun's outermost layer, the corona, from an inner layer, the chromosphere. The corona, the chromosphere and the transition region are of great interest and mystery to scientists. Temperatures in the corona can reach several million degrees Kelvin, far hotter -- often by more than a factor of 100 -- than any other layer of the sun's atmosphere. A solar flare arcing through the corona can be more than 10 million degrees Kelvin. This is puzzling and seems counterintuitive since the corona is the furthest layer from the sun and, therefore, should arguably be the coolest.

·         IRIS spectrograms are made by a process similar to what happens when you shine light through a prism, breaking it into different colors. Each color is formed by a different kind of atom in the solar atmosphere and we can extract all kinds of interesting information about what the plasma is doing based on that spectrum. For example, if the light is more red or blue than we'd expect, then we know that the plasma is moving either away from or toward us.

·          During a solar flare, plasma from the sun can heat up to millions of degrees Kelvin and evaporate into the corona. There it fills or is funneled into powerful magnetic fields that give it an arcing, loop-like shape.

·         The prediction of large solar flares is important because they can emit vast amounts of energy that can disrupt power grids, satellites, communication technology and aeronautics. For example, in March 1989, a powerful solar flare left millions of Canadians without electricity for about 12 hours, according to NASA.

Read More


Source: Science Daily